skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Berry, Tanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The solid solution LnSbxTe2−x−δ (Ln = lanthanide) is a family of square-net topological semimetals that exhibit tunable charge density wave (CDW) distortions and band filling dependent on x, offering broad opportunities to examine the interplay of topological electronic states, CDW, and magnetism. While several Ln series have been characterized, gaps in the literature remain, inviting a systematic survey of the remaining composition space that is synthetically accessible. We present our efforts to synthesize LnSbxTe2−x−δ across the remaining lanthanides via chemical vapor transport. Compiling our results with the reported literature, we generate a stability phase diagram across the ranges of Ln and x. We find a stability boundary for intermediate x beyond Tb, while x = 1 and x = 0 can be isolated up to Ho and Dy, respectively. SEM and XRD analyses of unsuccessful reactions indicated the formation of several stable binary phases. The presence of structurally related LnTe3 in samples suggests that stability is limited by the size of Ln, due to increasing compressive strain along the layer stacking axis with decreasing size. Finally, we demonstrate that late Ln can be stabilized in LnSbxTe2−x−δ via substitution into larger Ln members, synthesizing La1−yHoySbxTe2−x−δ as a proof of concept. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  2. Dirac material LaCuSb2 shows anisotropic superconducting response to applied magnetic fields. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  3. Abstract While ∼30% of materials are reported to be topological, topological insulators are rare. Magnetic topological insulators (MTI) are even harder to find. Identifying crystallographic features that can host the coexistence of a topological insulating phase with magnetic order is vital for finding intrinsic MTI materials. Thus far, most materials that are investigated for the determination of an MTI are some combination of known topological insulators with a magnetic ion such as MnBi2Te4. Motivated by the recent success of EuIn2As2, the role of chemical pressure on topologically trivial insulator is investigated, Eu5In2Sb6via Ga substitution. Eu5Ga2Sb6is predicted to be topological but is synthetically difficult to stabilize. The intermediate compositions between Eu5In2Sb6and Eu5Ga2Sb6are observed through theoretical works to explore a topological phase transition and band inversion mechanism. The band inversion mechanism is attributed to changes in Eu–Sb hybridization as Ga is substituted for In due to chemical pressure. Eu5In4/3Ga2/3Sb6is also synthesized, the highest Ga concentration in Eu5In2‐xGaxSb6, and report the thermodynamic, magnetic, transport, and Hall properties. Overall, the work paints a picture of a possible MTI via band engineering and explains why Eu‐based Zintl compounds are suitable for the co‐existence of magnetism and topology. 
    more » « less